Archaeal Ubiquitin-Like Proteins: Functional Versatility and Putative Ancestral Involvement in tRNA Modification Revealed by Comparative Genomic Analysis
نویسندگان
چکیده
The recent discovery of protein modification by SAMPs, ubiquitin-like (Ubl) proteins from the archaeon Haloferax volcanii, prompted a comprehensive comparative-genomic analysis of archaeal Ubl protein genes and the genes for enzymes thought to be functionally associated with Ubl proteins. This analysis showed that most archaea encode members of two major groups of Ubl proteins with the β-grasp fold, the ThiS and MoaD families, and indicated that the ThiS family genes are rarely linked to genes for thiamine or Mo/W cofactor metabolism enzymes but instead are most often associated with genes for enzymes of tRNA modification. Therefore it is hypothesized that the ancestral function of the archaeal Ubl proteins is sulfur insertion into modified nucleotides in tRNAs, an activity analogous to that of the URM1 protein in eukaryotes. Together with additional, previously described genomic associations, these findings indicate that systems for protein quality control operating at different levels, including tRNA modification that controls translation fidelity, protein ubiquitination that regulates protein degradation, and, possibly, mRNA degradation by the exosome, are functionally and evolutionarily linked.
منابع مشابه
Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P
RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5'-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to...
متن کاملIdentified Hybrid tRNA Structure Genes in Archaeal Genome
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...
متن کاملFunctional Genomic and Advanced Genetic Studies Reveal Novel Insights into the Metabolism, Regulation, and Biology of Haloferax volcanii
The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolom...
متن کاملInvolvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius
In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic prot...
متن کاملArchaeal Protein Biogenesis: Posttranslational Modification and Degradation
The study of Archaea at the DNA and RNA levels has provided considerable insight into replication, transcription, and other information-associated events which are either unique to this remarkable group of organisms or which were later found to also occur in Bacteria and/or Eukarya. In contrast, largely due to a lack of suitable model systems and a limited number of appropriate molecular tools,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010